Date |
Topic |
Tutorial |
References |
03/16 |
Principal Component Analysis
姜任遠 文宗麟 |
PCA |
- Max Wellings, Linear Models.
- Sam Roweis, EM Algorithms for PCA and SPCA, NIPS 1997.
- Michael Tipping, Christopher Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series, 1999.
- Matthew Turk, Alex Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, 1991.
- Tim Cootes, C. J. Taylor, Chapter 4 Statistical Shape Models, from Statistical Models of Appearance for Computer Vision.
- Volker Blanz, Thomas Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH, 1999.
- Brett Allen, Brian Curless, Zoran Popovic, The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans, SIGGRAPH, 2003.
|
03/23 |
PCA Extensions
葉冠麟
黃輔中 |
PCA missing data
Robust PCA |
- Haifeng Chen, Principal Component Analysis with Missing Data and Outliers.
- Fernando De la Torre, Michael Black, Robust Principal Component Analysis for Computer Vision, CVPR, 2001.
- Chakra Chennubhotla, Allan Hepson, SparsePCA Extracting Multi-Scale Structure from Data, ICCV, 2001.
- Rene Vidal, Yi Ma, Shankar Sastry, Generalized Principal Component Analysis (GPCA), CVPR, 2003.
- Rene Vidal, Yi Ma, Shankar Sastry, Algebraic Methods for Multiple-Subspace Segmentation.
|
03/30 |
Isomap
Locally Linear Embedding
謝昌熹 許平 |
ISOMAP & LLE |
- Stephen Borgatti, Multidimensional Scaling.
- Joshua Tenenbaum, Vin de Silva, John Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, 2000.
- Sam Roweis, Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 2000.
- Lawrence Saul, Sam Roweis, An Introduction to Locally Linear Embedding.
- Lawrence Saul, Sam Roweis, Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds, Journal of Machine Learning Research, 2003.
- Robert Pless, Image Spaces and Video Trajectories: Using Isomap to Explore Video Sequences, ICCV, 2003.
- Jackie Assa, Yaron Caspi, Daniel Cohen-Or, Action synopsis: Pose Selection and Illustration, ICCV, 2003.
|
04/06 |
Laplacian Eigenmaps
Linear Discriminant Analysis
黃俊翔 陳駿丞 蕭淳澤 |
LDA
LDA applications |
- Mikhail Belkin, Partha Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, NIPS, 2001.
- Lawrence Saul, Kilian Weinberger, Fei Sha, Jihun Ham, Daniel Lee, Spectral Methods for Dimensionality Reduction.
- Max Wellings, Fisher Linear Discriminant Analysis.
- Peter Belhumeur, Joao Hespanha, David Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection, PAMI, 1997.
- Jieping Ye, Ravi Janardan, Qi Li, Two-Dimensional Linear Discriminant Analysis, NIPS, 2004.
|
04/13 |
Locality Preserving Projection
Local Discriminant Embedding
蕭志傑 翁仲毅
潘振銘 |
LPP |
- Xiaofei He, Partha Niyogi, Locality Preserving Projection, NIPS, 2003.
- Xiaofei He, Shuicheng Yan, Yuxiao Hu, Hong-Jiang Zhang, Learning a Locality Preserving Subspace for Visual Recognition, ICCV, 2003.
- Xiaofei He, Incremental Semi-Supervised Subspace Learning for Image Retrieval, ACM Multimedia, 2004.
- Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, Hong-Jiang Zhang, Face Recognition Using Laplacianfacesl, PAMI, 2005.
- Hwann-Tzong Chen, Huang-Wei Chang, Tyng-Luh Liu, Local Discriminant Embedding and Its Variants, CVPR, 2005.
|
04/27
05/04 |
Support Vector Machines
李根逸
林宗勳
林宏儒
何昇舫 |
SVM
SVM
SVM
libsvm |
- Christopher Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998.
- Max Wellings, Support Vector Machines.
- Edgar Osuna, Robert Freund, Federico Girosi, Training Support Vector Machines: an Application to Face Detection, CVPR, 1997.
- Sami Romdhani, Philip Torr, Bernhard Scholkopf, Andrew Blake, Computationally Efficient Face Detection, ICCV, 2001.
- Shai Avidan, Support Vector Tracking, PAMI, 2004.
- Apostol Natsev, Milind Naphade, Jelena Tesic, Learning the Semantics of Multimedia Queries and Concepts from a Small Number of Examples, ACM Multimedia, 2005.
|
|
Support Vector Regression
黃子桓 |
SVR |
|
|
Relevance Vector Machine
楊善詠 |
RVM |
- Michael Tipping, The Relevance Vector Machine, NIPS, 2000.
- Michael Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Lerning Research, 2001.
- Oliver Williams, Andrew Blake, Roberto Cipolla, Sparse Bayesian Learning for Efficient Visual Tracking, PAMI, 2005.
|
05/11 |
Boosting
翁明昉
陳宏暐
黃信騫
鄭鎧尹 |
Ensemble Learning
AdaBoost binary
AdaBoost extensions
AdaBoost applications |
- Yoav Freund, Robert Schapire, A Decision-Theoretic eneralization of On-Line Learning and an Application to Boosting, European Conference on Computational Learning Theory 1995.
- Eric Bauer, Ron Kohavi, An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants, Machine Learning, 1999.
- Paul Viola, Michael Jones, Robust Real-Time Face Detetion, International Journal of Computer Vision, 2004.
- Paul Viola, Michael Jones, Detecting Pedestrians Using Patterns of Motion and Appearance, International Journal of Computer Vision, 2005.
- Shai Avidan, Ensemble Tracking, CVPR, 2005.
|
05/18
05/25 |
Graphical Models
朱威達 |
Graphical Model |
|
|
Belief Propagation
鄭文皇 謝致仁
謝永桓 |
low-level learning
Applications |
- Max Wellings, Belief Popagation.
- Jonathan Yedidia, William Freeman, Yair Weiss, Understanding Belief Propagation and its Generalizations, IJCAI, 2001.
- Pedro Felzenszwalb, Daniel Huttenlocher, Efficient Belief Propagation for Early Vision, CVPR, 2004.
- William Freeman, Egon Pasztor, Owen Carmichael, Learning Low-Level Vision, IJCV, 2001.
- William Freeman, Thouis Jones, Egon Pasztor, Example-Based Super-Resolution, IEEE CG&A, 2002.
- Jue Wang, Michael Cohen, An Iterative Optimization Approach for Unified Image Segmentation and Matting, ICCV, 2005.
|
05/25
06/01
06/08 |
Approximate Inference |
|
|
|
Expectation Maximization
莊上墀 郭煜楓 劉治杰 楊恕先 |
EM |
- Max Wellings, EM-Algorithm.
- Carlo Tomasi, Estimating Gaussian Mixture Densities with EM – A Tutorial
- Radford Neal, Geoffrey Hinton, A View of the EM algorithm that Justifies Incremental, Sparse, and Other Variants.
- Jeff Bilmes, A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
- Frank Dellaert, The Expectation Maximization Algorithm.
- Yair Weiss, Motion Segmentation using EM – a Short Tutorial.
- M. Weber, Max Welling, P. Perona, Unsupervised Learning of Models for Recognition, ECCV 2000.
- M. Weber, Max Welling, P. Perona, Towards Automatic Discovery of Object Categories, CVPR 2000.
|
|
Variational Learning
林蓉珊
周亮瑜
呂旺洲 |
Variational Learning
Variational Learning
Variational Learning |
- Michael Jordan, Zoubin Ghahramani, Tommis Jaakkola, Lawrence Saul, An Introduction to Variational Methods for Graphical Models, Machine Learning, 1999.
- Nebojsa Jojic, Brendan Frey, Learning Flexible Sprites in Video Layers, CVPR, 2001.
- Brendan Frey, Nebojsa Jojic, Anitha Kannan, Learning Appearance and Transparency Manifolds of Occluded Objects in Layers, CVPR, 2003.
- Nebojsa Jojic, Brendan Frey, A Generative Model for 2.5D Vision: Estimation Appearance, Transformation, Illumination, Transparency and Occlusion.
- Brendan Frey, Nebojsa Jojic, A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models, PAMI, 2005.
- Li Fei-Fei, Rob Fergus, Pietro Perona, A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories, PAMI, 2005.
|
One reply on “[机器学习相关的一些中文教程]Machine Learning for Graphics, Vision and Multimedia”
請問要怎麼進入topic