题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/
参考文献:
思路:
实在是脑子转不过来,看了一下解法,然后就把自己的理解讲一下吧。
有两个规律需要说下:
1.在某个数列头尾删去相同数量的元素,其中位数是不变的。比如[1,2,3,4]删去1和4.
2.如果两个数列的中位数是m1, m2,那么合并后的数列的中位数的值肯定在[m1,m2]范围内。
既然题目是要Log级别的复杂度,就要想到要用折半法把问题的规模降低…举个例子,假设有[1,2,4,6,6,8]和[1,5,7,8,10,25,36]两个数列,很容易算出他们的(前序 )中位数分别是4和8,而他们合并后的中位数的值在[4,8]之间。
然后可以删去无用的值,[1,2]与[10,25,36]. 但由于规律1的限制,如果后面删了3个的话,合并后删减的数列会发生变化(本例中奇偶性都变了),我们只能删去min(2,3)=2个元素…这种删值从理论上讲就是折半了,然后搞一波递归就行了。
最最最基本的思路如下:
两个有序数列Ary1, Ary2(假设升序排列)的中位数分别为m1,m2 if m1 == m2: LUCKY!!! elif m1 < m2: 取(Ary1的后半段,Ary2的前半段)再算 else 取(Ary1的前半段,Ary2的后半段)再算
由于题设里面俩数组是不等长的,所以里对其中某个数组n<=2时处理方法需要注意…
代码:
int max(int x, int y) { return x>y ? x : y; } int min(int x, int y) { return x<y ? x : y; } double getMedian(int* nums, int size) { if (size == 0) return -1; if (size % 2 == 0) { //Even number return (nums[size / 2] + nums[size / 2 - 1]) / 2.0; } else { return nums[(size - 1) / 2]; } } double findMedianMerge(int* nums1, int nums1Size, int* nums2, int nums2Size) { int count = 0; int n1Count = 0; int totalSize = nums1Size + nums2Size; int t1, t2; if (totalSize % 2 == 0) { t1 = totalSize / 2; t2 = t1 + 1; } else { t1 = -1; t2 = totalSize / 2 + 1; } double sum = 0; int curVal; while (n1Count < nums1Size) { if (*nums1 < *nums2) { n1Count++; curVal = *nums1; nums1++; } else { curVal = *nums2; nums2++; } count++; if (count == t1 || count == t2) { sum += curVal; } else if (count >= t2) { break; } } if (count < t1) { //Not finished nums2 += (t1 - count - 1); count = t1; sum += *nums2; nums2++; } if (count < t2) { nums2 += (t2 - count - 1); sum += *nums2; } if (t1 == -1) return sum; else return sum / 2.0; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { int totalSize = nums1Size + nums2Size; if (nums1Size > nums2Size) { //Keep ary1 shorter than ary2 int* temp = nums1; int t = nums1Size; nums1 = nums2; nums1Size = nums2Size; nums2 = temp; nums2Size = t; } if (nums1Size == 0) { return getMedian(nums2, nums2Size); } else if (nums1Size == 1) { if (nums2Size == 1) { return (nums1[0] + nums2[0]) / 2.0; } else { return findMedianMerge(nums1, nums1Size, nums2, nums2Size); } } else if (nums1Size == 2) { if (nums2Size == 2) { return (max(nums1[0], nums2[0]) + min(nums1[1], nums2[1])) / 2.0; } else { return findMedianMerge(nums1, nums1Size, nums2, nums2Size); } } //Slice double m1 = getMedian(nums1, nums1Size); double m2 = getMedian(nums2, nums2Size); if (m1 == m2) { //Got lucky return m1; } else if (m1 < m2) { //Slice L-nums1 and R-nums2 int cut = (nums1Size - 1) / 2; return findMedianSortedArrays(nums1 + cut, nums1Size - cut, nums2, nums2Size - cut); } else { //Slice R-nums1 and L-nums2 int cut = (nums1Size - 1) / 2; return findMedianSortedArrays(nums1, nums1Size - cut, nums2 + cut, nums2Size - cut); } }