题目:
You are given an array x of n
positive numbers. You start at point (0,0)
and moves x[0]
metres to the north, then x[1]
metres to the west, x[2]
metres to the south,x[3]
metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1)
extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2]
,
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
,
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
,
┌───┐
│ │
└───┼>
Return true (self crossing)
思路:
https://leetcode.com/discuss/88054/java-oms-with-explanation
本人愚钝,想不到O(1)空间复杂度的方法,只能看Discussion啦,看完以后发现,遇到问题能够分析出各种情况真是不容易。
把大神的代码总结一下,可以变成下面这张图,图中给出了可能发生self-crossing的所有情况(其他情况都是这些情况的”旋转”版本):
所以就是遍历所有移动步x[i],判断之前的情况是否在这三种情况之内,如果有的话,那肯定就有crossing了。其中情况2的意思是,当前的步进x[i]覆盖到了x[i-4]了,其他情况看图应该都好理解的。
代码:
class Solution { public: bool isSelfCrossing(vector<int>& x) { int numSz = x.size(); if(numSz <= 3) return false; for(int i=3; i<numSz; i++){ if(x[i]>=x[i-2] && x[i-1]<=x[i-3]) //Cond 1 return true; else if(i>=4 && x[i-1]==x[i-3] && x[i]+x[i-4]>=x[i-2])//Cond 2 return true; else if(i>=5 && x[i-1]<=x[i-3] && x[i-4]<=x[i-2] && x[i]+x[i-4]>=x[i-2] && x[i-1]+x[i-5]>=x[i-3]) //Cond 3 return true; } return false; } };