Categories
生活琐碎

I'm Gonna Make Him An Offer He Can't Refuse

I’m Gonna Make Him An Offer He Can’t Refuse——The Godfather

Categories
不学无术

LeetCode 217. Contains Duplicate

题目:https://leetcode.com/problems/contains-duplicate/
思路:弄个哈希表啊或者现成的用哈希(或者XX树)的容器就行了
代码:

class Solution {
public:
    bool containsDuplicate(vector<int>& nums) {
        set<int> numSet;
        int numSize = nums.size();
        for (int i = 0; i<numSize; i++) {
            if (numSet.count(nums[i]) == 0)
                numSet.insert(nums[i]);
            else
                return true;
        }
        return false;
    }
};

 

Categories
木有技术

Cisco Linksys EA3500 OpenWrt Snapshot镜像

仅限Snapshot版本r48648使用,需要自己搭服务器的可以参考我的帖子http://boweihe.me/?p=1537

没有Luci界面的,可以直接修改/etc/opkg/distfeeds.conf 这个文件。LuCi界面下等效的。

src/gz designated_driver_base http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/base
src/gz designated_driver_kernel http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/kernel
src/gz designated_driver_luci http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/luci
src/gz designated_driver_management http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/management
src/gz designated_driver_packages http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/packages
src/gz designated_driver_routing http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/routing
src/gz designated_driver_telephony http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/telephony
# src/gz designated_driver_targets http://hk.boweihe.me/downloads.openwrt.org/snapshots/trunk/kirkwood/generic/packages/targets

 
 

Categories
不学无术

LeetCode 242. Valid Anagram

原题:https://leetcode.com/problems/valid-anagram/
思路:Anagram就是指两个单词(一说句子也行)里面字符的种类、数量一样,但是能拼出不同的词。所以思路就是统计里面的字符频率就行。
代码:

class Solution {
public:
    bool isAnagram(string s, string t) {
        if(s.size() != t.size())
            return false;
        int stable[26] = {0};
        int ttable[26] = {0};
        for(int i=0; i<s.size(); i++){
            stable[s[i] - 'a'] ++;
            ttable[t[i] - 'a'] ++;
        }
        for(int i=0; i<26; i++){
            if (stable[i] != ttable[i])
                return false;
        }
        return true;
    }
};

 

Categories
不学无术

LeetCode 283. Move Zeroes

题目:https://leetcode.com/problems/move-zeroes/
思路:
说是把0 挪到后面去,其实等同于把非0值往前挪。挪到什么地方呢?就得找个东西记录可以往前挪的“坑”。而这个“坑”有两种情况:
1.原来的值就是0的;
2.如果把当前的非0值往前面挪过了,那当前的位置也就空缺;
从一开始记录一下找到的0的个数,把非0值挪完了以后,最后几位写成0就行。
这一切的时间复杂度为O(n)
代码(用到了队列来存储坑的位置):

class Solution {
public:
    void moveZeroes(vector<int>& nums) {
        int size = nums.size();
        int zeroCount = 0;
        queue<int> availIndices;
        for(int i=0; i < size; i++){
            if(nums[i] == 0){
                zeroCount ++;
                availIndices.push(i);
            } else {
                if(!availIndices.empty()) {
                    //Move forward
                    int index =availIndices.front();
                    availIndices.pop();
                    nums[index] = nums[i];
                    //Mark i as empty
                    availIndices.push(i);
                }
            }
        }
        for(int i = size - zeroCount; i < size; i++) {
            nums[i] = 0;
        }
    }
};

 

Categories
不学无术

LeetCode #100. Same Tree

题目:https://leetcode.com/problems/same-tree/
分析:注意判断NULL情况,用递归做
代码:(秒AC有木有!)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isSameTree(TreeNode* p, TreeNode* q) {
        if(p == NULL && q == NULL)
            return true;
        if(p == NULL || q == NULL)
            return false;
        if(p->val != q->val)
            return false;
        return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
    }
};

 

Categories
木有技术

前端测试服务 by aliyun

感觉很给力的样子,一天有俩小时的时间可以用,从IE6开始的浏览器兼容性测试,竟然是跑虚拟机的!
http://fts.aliyun.com/

Categories
不学无术

LeetCode #226. Invert Binary Tree

题目:https://leetcode.com/problems/invert-binary-tree/
思路:这TM还要思路?
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(root == NULL)
            return root;
        TreeNode *tmpNode = root->right;
        root->right = root->left;
        root->left = tmpNode;
        if(root->left != NULL)
            invertTree(root->left);
        if(root->right != NULL)
            invertTree(root->right);
        return root;
    }
};

 

Categories
生活琐碎

16年2月10日

珍惜眼前的一切,然后加油。

Categories
不学无术

LeetCode #4. Median of Two Sorted Arrays

题目链接https://leetcode.com/problems/median-of-two-sorted-arrays/
参考文献

思路:
实在是脑子转不过来,看了一下解法,然后就把自己的理解讲一下吧。
有两个规律需要说下:
1.在某个数列头尾删去相同数量的元素,其中位数是不变的。比如[1,2,3,4]删去1和4.
2.如果两个数列的中位数是m1, m2,那么合并后的数列的中位数的值肯定在[m1,m2]范围内。
既然题目是要Log级别的复杂度,就要想到要用折半法把问题的规模降低…举个例子,假设有[1,2,4,6,6,8]和[1,5,7,8,10,25,36]两个数列,很容易算出他们的(前序 )中位数分别是4和8,而他们合并后的中位数的值在[4,8]之间。
然后可以删去无用的值,[1,2]与[10,25,36]. 但由于规律1的限制,如果后面删了3个的话,合并后删减的数列会发生变化(本例中奇偶性都变了),我们只能删去min(2,3)=2个元素…这种删值从理论上讲就是折半了,然后搞一波递归就行了。
最最最基本的思路如下:

两个有序数列Ary1, Ary2(假设升序排列)的中位数分别为m1,m2
if m1 == m2:
    LUCKY!!!
elif m1 < m2:
    取(Ary1的后半段,Ary2的前半段)再算
else
    取(Ary1的前半段,Ary2的后半段)再算

由于题设里面俩数组是不等长的,所以里对其中某个数组n<=2时处理方法需要注意…
代码:

int max(int x, int y) {
    return x>y ? x : y;
}
int min(int x, int y) {
    return x<y ? x : y;
}
double getMedian(int* nums, int size) {
	if (size == 0)
		return -1;
	if (size % 2 == 0) {
		//Even number
		return (nums[size / 2] + nums[size / 2 - 1]) / 2.0;
	}
	else {
		return nums[(size - 1) / 2];
	}
}
double findMedianMerge(int* nums1, int nums1Size, int* nums2, int nums2Size) {
	int count = 0;
	int n1Count = 0;
	int totalSize = nums1Size + nums2Size;
	int t1, t2;
	if (totalSize % 2 == 0) {
		t1 = totalSize / 2;
		t2 = t1 + 1;
	}
	else {
		t1 = -1;
		t2 = totalSize / 2 + 1;
	}
	double sum = 0;
	int curVal;
	while (n1Count < nums1Size) {
		if (*nums1 < *nums2) {
			n1Count++;
			curVal = *nums1;
			nums1++;
		}
		else {
			curVal = *nums2;
			nums2++;
		}
		count++;
		if (count == t1 || count == t2) {
			sum += curVal;
		}
		else if (count >= t2) {
			break;
		}
	}
	if (count < t1) {
		//Not finished
		nums2 += (t1 - count - 1);
		count = t1;
		sum += *nums2;
		nums2++;
	}
	if (count < t2) {
		nums2 += (t2 - count - 1);
		sum += *nums2;
	}
	if (t1 == -1)
		return sum;
	else
		return sum / 2.0;
}
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
	int totalSize = nums1Size + nums2Size;
	if (nums1Size > nums2Size) {
		//Keep ary1 shorter than ary2
		int* temp = nums1;
		int t = nums1Size;
		nums1 = nums2;
		nums1Size = nums2Size;
		nums2 = temp;
		nums2Size = t;
	}
	if (nums1Size == 0) {
		return getMedian(nums2, nums2Size);
	} else if (nums1Size == 1) {
		if (nums2Size == 1) {
			return (nums1[0] + nums2[0]) / 2.0;
		}
		else {
			return findMedianMerge(nums1, nums1Size, nums2, nums2Size);
		}
	}
	else if (nums1Size == 2) {
		if (nums2Size == 2) {
			return (max(nums1[0], nums2[0]) + min(nums1[1], nums2[1])) / 2.0;
		}
		else {
			return findMedianMerge(nums1, nums1Size, nums2, nums2Size);
		}
	}
	//Slice
	double m1 = getMedian(nums1, nums1Size);
	double m2 = getMedian(nums2, nums2Size);
	if (m1 == m2) {
		//Got lucky
		return m1;
	}
	else if (m1 < m2) {
		//Slice L-nums1 and R-nums2
		int cut = (nums1Size - 1) / 2;
		return findMedianSortedArrays(nums1 + cut, nums1Size - cut, nums2, nums2Size - cut);
	}
	else {
		//Slice R-nums1 and L-nums2
		int cut = (nums1Size - 1) / 2;
		return findMedianSortedArrays(nums1, nums1Size - cut, nums2 + cut, nums2Size - cut);
	}
}